1. US National Library of Medicine, National Institutes of Health. Medline Plus. Autosomal recessive. Accessed July 12, 2017.

2. Egan ME. Genetics of cystic fibrosis: clinical implications. Clin Chest Med. 2016;37(1):9-16.

3. Ong T, Ramsey BW. New therapeutic approaches to modulate and correct cystic fibrosis transmembrane conductance regulator. Pediatr Clin North Am. 2016;63(4):751-764.

4. Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med. 1996;154(5):1229-1256.

5. Griesenbach U, Geddes DM, Alton EWFW. The pathogenic consequences of a single mutated CFTR gene. Thorax. 1999;54(suppl 2):S19-S23.

6. US CF Foundation, Johns Hopkins University, The Hospital for Sick Children. Clinical and Functional Translation of CFTR. Accessed October 5, 2017.

7. Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059-1065.

8. Cystic Fibrosis Foundation. Patient registry: annual data report, 2016. Accessed March 22, 2018.

9. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73(7):1251-1254.

10. De Boeck K, Zolin A, Cuppens H, Olesen HV, Viviani L. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J Cyst Fibros. 2014;13(4):403-409.

11. Green DM, McDougal KE, Blackman SM, et al. Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients. Respir Res. 2010;11:140.

12. Sosnay PR, Siklosi KR, Van Goor F, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013;45(10):1160-1167.

13. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations–correlation with incidence data and application to screening. Hum Mutat. 2002;19(6):575-606.

14. Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology/ Diagnosis/ Management. 9th ed. Philadelphia, PA: Saunders; 2010.

15. Yamada T, ed. Alpers D, Kalloo A, Kaplowitz N, Owyang C, Powell D, associate eds. Textbook of Gastroenterology. 5th ed. Hoboken, NJ: Wiley-Blackwell; 2009.

16. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891-1904.

17. Lopes-Pacheco M. CFTR modulators: shedding light on precision medicine for cystic fibrosis. Front Pharmacol. 2016;7(275):1-20.

18. Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal models of cystic fibrosis pathology: phenotypic parallels and divergences [published online June 1, 2016]. Biomed Res Int. 2016:5258727. doi: 10.1155/2016/5258727. Accessed October 5, 2017.

19. Scott LK, Toner R. Clinically promising biomarkers in cystic fibrosis pulmonary exacerbations. Lung. 2017;195(4):397-401.

20. Harman K, Dobra R, Davies JC. Disease-modifying drug therapy in cystic fibrosis [published online March 14, 2017]. Paediatr Respir Rev. doi: 10.1016/j.prrv.2017.03.008. Accessed October 5, 2017.

21. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45-56.

22. Hadida S, Van Goor F, Grootenhuis PDJ. CFTR modulators for the treatment of cystic fibrosis. In: Macor JE, ed. Annual Reports in Medicinal Chemistry. Vol 45. Oxford, UK. Academic Press; 2010:157-173.

23. Cheng SH, Gregory RJ, Marshall J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990;63(4):827-834.

24. Lu Y, Xiong X, Helm A, et al. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J Biol Chem. 1998;273(1):568-576.

25. Lukacs GL, Durie PR. Pharmacologic approaches to correcting the basic defect in cystic fibrosis. N Engl J Med. 2003;349(15):1401-1404.

26. Ramsey BW, Davies J, McElvaney G, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663-1672.

27. De Boeck K, Munck A, Walker S, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros. 2014;13(6):674-680.

28. Moss RB, Flume PA, Elborn JS, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis who have an Arg117His-CFTR mutation: a double-blind, randomised controlled trial. Lancet Respir Med. 2015;3(7):524-533.

29. Davies JC, Wainwright CE, Canny GJ, et al; VX08-770-103 (ENVISION) Study Group. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013;187(11):1219-1225.

30. Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220-231.

31. Proteostasis Therapeutics, Inc. Data on file.

32. Boyle MP, Bell SC, Konstan MW, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med. 2014;2(7):527-538.

33. Karamyshev AL, Patrick AE, Karamysheva ZN, et al. Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell. 2014;156(1-2):146-157.

34. Ramalho AS, Beck S, Meyer M, et al. Five percent of normal cystic fibrosis transmembrane conductance regulator mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am J Respir Cell Mol Biol. 2002;27(5):619-627.