References

1. US National Library of Medicine, National Institutes of Health. Medline Plus. Autosomal recessive. http://www.nlm.nih.gov/medlineplus/ency/article/002052.htm. Accessed July 12, 2017.

2. Egan ME. Genetics of cystic fibrosis: clinical implications. Clin Chest Med. 2016;37(1):9-16.

3. Ong T, Ramsey BW. New therapeutic approaches to modulate and correct cystic fibrosis transmembrane conductance regulator. Pediatr Clin North Am. 2016;63(4):751-764.

4. Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med. 1996;154(5):1229-1256.

5. Griesenbach U, Geddes DM, Alton EWFW. The pathogenic consequences of a single mutated CFTR gene. Thorax. 1999;54(suppl 2):S19-S23.

6. US CF Foundation, Johns Hopkins University, The Hospital for Sick Children. Clinical and Functional Translation of CFTR. https://www.CFTR2.org. Accessed October 5, 2017.

7. Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059-1065.

8. Cystic Fibrosis Foundation. Patient registry: annual data report, 2016. https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2016-Patient-Registry-Annual-Data-Report.pdf. Accessed March 22, 2018.

9. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73(7):1251-1254.

10. De Boeck K, Zolin A, Cuppens H, Olesen HV, Viviani L. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J Cyst Fibros. 2014;13(4):403-409.

11. Green DM, McDougal KE, Blackman SM, et al. Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients. Respir Res. 2010;11:140.

12. Sosnay PR, Siklosi KR, Van Goor F, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013;45(10):1160-1167.

13. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations–correlation with incidence data and application to screening. Hum Mutat. 2002;19(6):575-606.

14. Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology/ Diagnosis/ Management. 9th ed. Philadelphia, PA: Saunders; 2010.

15. Yamada T, ed. Alpers D, Kalloo A, Kaplowitz N, Owyang C, Powell D, associate eds. Textbook of Gastroenterology. 5th ed. Hoboken, NJ: Wiley-Blackwell; 2009.

16. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891-1904.

17. Lopes-Pacheco M. CFTR modulators: shedding light on precision medicine for cystic fibrosis. Front Pharmacol. 2016;7(275):1-20.

18. Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal models of cystic fibrosis pathology: phenotypic parallels and divergences [published online June 1, 2016]. Biomed Res Int. 2016:5258727. doi: 10.1155/2016/5258727. Accessed October 5, 2017.

19. Scott LK, Toner R. Clinically promising biomarkers in cystic fibrosis pulmonary exacerbations. Lung. 2017;195(4):397-401.

20. Harman K, Dobra R, Davies JC. Disease-modifying drug therapy in cystic fibrosis [published online March 14, 2017]. Paediatr Respir Rev. doi: 10.1016/j.prrv.2017.03.008. Accessed October 5, 2017.

21. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45-56.

22. Hadida S, Van Goor F, Grootenhuis PDJ. CFTR modulators for the treatment of cystic fibrosis. In: Macor JE, ed. Annual Reports in Medicinal Chemistry. Vol 45. Oxford, UK. Academic Press; 2010:157-173.

23. Cheng SH, Gregory RJ, Marshall J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990;63(4):827-834.

24. Lu Y, Xiong X, Helm A, et al. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J Biol Chem. 1998;273(1):568-576.

25. Lukacs GL, Durie PR. Pharmacologic approaches to correcting the basic defect in cystic fibrosis. N Engl J Med. 2003;349(15):1401-1404.

26. Ramsey BW, Davies J, McElvaney G, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663-1672.

27. De Boeck K, Munck A, Walker S, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros. 2014;13(6):674-680.

28. Moss RB, Flume PA, Elborn JS, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis who have an Arg117His-CFTR mutation: a double-blind, randomised controlled trial. Lancet Respir Med. 2015;3(7):524-533.

29. Davies JC, Wainwright CE, Canny GJ, et al; VX08-770-103 (ENVISION) Study Group. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013;187(11):1219-1225.

30. Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220-231.

31. Proteostasis Therapeutics, Inc. Data on file.

32. Boyle MP, Bell SC, Konstan MW, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med. 2014;2(7):527-538.

33. Karamyshev AL, Patrick AE, Karamysheva ZN, et al. Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell. 2014;156(1-2):146-157.

34. Ramalho AS, Beck S, Meyer M, et al. Five percent of normal cystic fibrosis transmembrane conductance regulator mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am J Respir Cell Mol Biol. 2002;27(5):619-627.